ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
A. P. Malinauskas, J. W. Gooch, Jr., J. D. Redman
Nuclear Technology | Volume 8 | Number 1 | January 1970 | Pages 52-57
Material | doi.org/10.13182/NT70-A28633
Articles are hosted by Taylor and Francis Online.
The previously reported enhanced volatility of tellurium dioxide due to water vapor has been confirmed over the temperature range 825 to 970°K through vapor pressure measurements with a mass transport apparatus. Investigations of the temperature dependence of the characteristic equilibrium constant yield a value of 30.4 kcal/ mole for the heat of the (assumed) reaction TeO2(s) + H2O(g) = TeO(OH)2(g). Attempts to identify the gaseous hydroxide species through mass spectrometry were unsuccessful. Mass spectrometer studies of TeO2 vapor, however, indicate ∼20% dimer formation within the temperature range 920 to 1050°K.