ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Dunlap Scott, W. P. Eatherly
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 179-189
Reactor | doi.org/10.13182/NT70-A28624
Articles are hosted by Taylor and Francis Online.
Existing data an dimensional changes in graphite have been fitted to parabolic temperature-sensitive curves. From these, the graphite life, radiation-induced stresses, and permissible geometries have been calculated. It is concluded existing materials can be utilized in a molten-salt reactor which has a core graphite life of about four years, without serious cost penalty. Fission product xenon can be removed by sparging the fuel salt with helium bubbles and removing them after enrichment. With reasonable values of salt-to-bubble transfer coefficient and graphite permeability, the penalty to breeding ratio can be reduced to <0.5%.