ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
M. E. Whatley, L. E. McNeese, W. L. Carter, L. M. Ferris, E. L. Nicholson
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 170-178
Reactor | doi.org/10.13182/NT70-A28623
Articles are hosted by Taylor and Francis Online.
The molten-salt breeder reactor being developed at Oak Ridge National Laboratory (ORNL) requires continuous chemical processing of the fuel salt, 7LiF-BeF2-ThF4 (72-16-12 mole%) containing ∼0.3 mole% 233UF4. The reactor and the processing plant are planned as an integral system. The main functions of the processing plant will be to isolate 233Pa from the neutron flux and to remove the rare-earth fission products. The processing method being developed involves the selective chemical reduction of the various components into liquid bismuth solutions at ∼600°C, utilizing multistage counter-current extraction. Protactinium, which is easily separated from uranium, thorium, and the rare earths, would be trapped in the salt phase in a storage tank located between two extraction contactors and allowed to decay to 233U. Rare earths would be separated from thorium by a similar reductive extraction method; however, this operation will not be as simple as the protactinium isolation step because the rare-earth-thorium separation factors are only 1.3 to 3.5. The proposed process would employ electrolytic cells to simultaneously introduce reductant into the bismuth phase at the cathode and to return extracted materials to the salt phase at the anode. The practicability of the reductive extraction process depends on the successful development of salt-metal contactors, electrolytic cells, and suitable materials of construction.