ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. W. Rosenthal, P. R. Kasten, R. B. Briggs
Nuclear Technology | Volume 8 | Number 2 | February 1970 | Pages 107-117
Reactor | doi.org/10.13182/NT70-A28619
Articles are hosted by Taylor and Francis Online.
Molten-salt breeder reactors (MSBR's) are being developed by the Oak Ridge National Laboratory for generating low-cost power while extending the nation's resources of fissionable fuel. The fluid fuel in these reactors, consisting of UF4 and ThF4 dissolved in fluorides of beryllium and lithium, is circulated through a reactor core moderated by graphite. Technology developments over the past 20 years have culminated in the successful operation of the 8-MW(th) MoltenSalt Reactor Experiment (MSRE), and have indicated that operation with a molten fuel is practical, that the salt is stable under reactor conditions, and that corrosion is very low. Processing of the MSRE fuel has demonstrated the MSR processing associated with high-performance converters. New fuel processing methods under development should permit MSR's to operate as economical breeders. These features, combined with high thermal efficiency (44%) and low primary system pressure, give MSR converters and breeders potentially favorable economic, fuel utilization, and safety characteristics. Further, these reactors can be initially fueled with 233U, 235U, or plutonium. The construction cost of an MSBR power plant is estimated to be about the same as that of light-water reactors. This could lend to power costs ∼0.5 to 1.0 mill/kWh less than those for light-water reactors. Achievement of economic molten-salt breeder reactors requires the construction and operation of several reactors of increasing size and their associated processing plants.