Molten-salt breeder reactors (MSBR's) are being developed by the Oak Ridge National Laboratory for generating low-cost power while extending the nation's resources of fissionable fuel. The fluid fuel in these reactors, consisting of UF4 and ThF4 dissolved in fluorides of beryllium and lithium, is circulated through a reactor core moderated by graphite. Technology developments over the past 20 years have culminated in the successful operation of the 8-MW(th) MoltenSalt Reactor Experiment (MSRE), and have indicated that operation with a molten fuel is practical, that the salt is stable under reactor conditions, and that corrosion is very low. Processing of the MSRE fuel has demonstrated the MSR processing associated with high-performance converters. New fuel processing methods under development should permit MSR's to operate as economical breeders. These features, combined with high thermal efficiency (44%) and low primary system pressure, give MSR converters and breeders potentially favorable economic, fuel utilization, and safety characteristics. Further, these reactors can be initially fueled with 233U, 235U, or plutonium. The construction cost of an MSBR power plant is estimated to be about the same as that of light-water reactors. This could lend to power costs ∼0.5 to 1.0 mill/kWh less than those for light-water reactors. Achievement of economic molten-salt breeder reactors requires the construction and operation of several reactors of increasing size and their associated processing plants.