ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Garry C. Gose, John G. Shatford, Lance J. Agee
Nuclear Technology | Volume 122 | Number 2 | May 1998 | Pages 132-145
Technical Paper | RETRAN | doi.org/10.13182/NT98-A2857
Articles are hosted by Taylor and Francis Online.
A RETRAN-03 computer code version has been developed to analyze reactor transients requiring three-dimensional reactor core neutronics models. The new code will enable the user to couple a complex RETRAN nuclear steam supply system model to a detailed multidimensional neutronics core model.The neutronics model is based on a three-dimensional nodal model using the analytic nodal method that allows a detailed three-dimensional representation of the core but requires less computational effort than conventional fine-mesh finite difference methods. The model uses a full two-group diffusion equation implementation coupled to six delayed neutron groups.Two representative analyses were used as evaluation cases. The work involved the first use of the RETRAN-03 advanced system analysis code using three-dimensional neutronics methods. The purpose of these studies was to gain experience in RETRAN-3D modeling methods and to compare the results with previous calculations as part of a code verification effort.The work has led to a new capability for the RETRAN-03 code, enabling the user to examine the core behavior in more detail than in previous versions and to study transients that involve nonsymmetric core behavior.