ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Björn Gylling, Luis Moreno, Ivars Neretnieks
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 93-103
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2854
Articles are hosted by Taylor and Francis Online.
The release from initially damaged canisters for spent fuel located in crystalline rock is calculated. The radionuclide transport through the near field is calculated using the compartment model (NUCTRAN), and then the channel network concept (CHAN3D) is used for the transport in the far field. The flow rates at certain canister locations from the flow field generated by CHAN3D are used as input data to NUCTRAN, and then the near-field release is used as input to the far-field transport simulations. The models are applied to a hypothetical repository layout located at the Swedish Äspö Hard Rock Laboratory site. The hydraulic data and the flow-wetted surface area used in the model are estimated from hydraulic measurements. Release rate calculations for several radionuclides are performed to illustrate the model-coupling concept. The coupled models can be used as an efficient tool to simulate release from a repository and the transport to a recipient.