ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Björn Gylling, Luis Moreno, Ivars Neretnieks
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 93-103
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT98-A2854
Articles are hosted by Taylor and Francis Online.
The release from initially damaged canisters for spent fuel located in crystalline rock is calculated. The radionuclide transport through the near field is calculated using the compartment model (NUCTRAN), and then the channel network concept (CHAN3D) is used for the transport in the far field. The flow rates at certain canister locations from the flow field generated by CHAN3D are used as input data to NUCTRAN, and then the near-field release is used as input to the far-field transport simulations. The models are applied to a hypothetical repository layout located at the Swedish Äspö Hard Rock Laboratory site. The hydraulic data and the flow-wetted surface area used in the model are estimated from hydraulic measurements. Release rate calculations for several radionuclides are performed to illustrate the model-coupling concept. The coupled models can be used as an efficient tool to simulate release from a repository and the transport to a recipient.