ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Uwe Kasemeyer, Jean-Marie Paratte, Peter Grimm, Rakesh Chawla
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 52-63
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2850
Articles are hosted by Taylor and Francis Online.
The large quantities of reactor-grade (RG) and weapons-grade (WG) Pu accumulated worldwide could be reduced by employing 100% mixed-oxide (MOX) cores in light water reactors. The buildup of new Pu from the U present in the MOX, however, remains disadvantageous from the viewpoint of inventory reduction and also enhances the need for multiple recycling. A more effective way would be to use U-free fuel so that no new Pu is produced.A comparison is made, from the physics design viewpoint, between the potential and the possible difficulties for two different types of Pu-burning pressurized water reactor cores, namely, 100% MOX and 100% uranium-free Pu fuel. The latter employs ZrO2 as inert matrix and Er2O3 as burnable poison. In each case, RG and WG Pu have been considered separately. The characteristics of the four different cores have been studied on the basis of three-dimensional calculations for an equilibrium cycle, a real-life UO2-fueled core being considered as reference for comparison purposes.For all four Pu-burning cases, it appears possible to design a four-region core with a natural cycle length of more than 300 days. For the 100% MOX cores, the Pu mass is reduced during irradiation by ~35% of the initial Pu inventory. For the U-free cores, the consumption is about twice as much, i.e., ~60% for the RG-Pu fuel and over 70% for the WG-Pu core. The reactivity balance in going from hot full power to hot zero power conditions shows that while the 100% MOX core with RG Pu would need more effective control rods, both types of U-free cores have larger shutdown margins than the reference case. Consideration of the reactivity coefficients indicates that a steam-line-break accident could be more problematic in the MOX core with RG Pu than in the other cases. The rod ejection transient should be safe because the maximum inserted worth of a control rod is ~0.5 $. More detailed investigations of transient behavior - particularly for the U-free cores - are needed, the current study having considered feasibility mainly from the viewpoint of static physics considerations.