The United States and Russia expect to have a surplus of ~150 tonnes of weapons-grade plutonium (WGP) and 1000 tonnes of weapons-grade uranium resulting from drastic reductions in nuclear weapons programs. One of the most favored candidate methods for disposing of the WGP is to blend it with natural or depleted uranium down to 5 to 7 wt% of WGP for light water reactor (LWR) fuel pellet fabrication. However, this approach, with a conversion ratio of 0.6, will produce more plutonium and other actinides in the spent fuel than the nonfertile fuel and the proposed actinide-reduced plutonium fuel (ARPF). This process only transforms the weapons-grade fissile materials to civilian-grade plutonium, which is still a nonproliferation concern, so it does not completely solve the plutonium disposition problem. Disposition of WGP in reactors without fertile material has been proposed by industry and national laboratories. A new ARPF is described that would use WGP mixed with medium-enrichment (20 at.% < 235U < 93 at.%) UO2 and the nonfertile material tungsten to achieve a conversion ratio <0.1. The ARPF can meet the WGP disposal goal while minimizing the plutonium production. Its physics and burnup characteristics are analyzed, and the results are compared with LWR UO2 and mixed-oxide fuel.