ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Gray S. Chang
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 43-51
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2849
Articles are hosted by Taylor and Francis Online.
The United States and Russia expect to have a surplus of ~150 tonnes of weapons-grade plutonium (WGP) and 1000 tonnes of weapons-grade uranium resulting from drastic reductions in nuclear weapons programs. One of the most favored candidate methods for disposing of the WGP is to blend it with natural or depleted uranium down to 5 to 7 wt% of WGP for light water reactor (LWR) fuel pellet fabrication. However, this approach, with a conversion ratio of 0.6, will produce more plutonium and other actinides in the spent fuel than the nonfertile fuel and the proposed actinide-reduced plutonium fuel (ARPF). This process only transforms the weapons-grade fissile materials to civilian-grade plutonium, which is still a nonproliferation concern, so it does not completely solve the plutonium disposition problem. Disposition of WGP in reactors without fertile material has been proposed by industry and national laboratories. A new ARPF is described that would use WGP mixed with medium-enrichment (20 at.% < 235U < 93 at.%) UO2 and the nonfertile material tungsten to achieve a conversion ratio <0.1. The ARPF can meet the WGP disposal goal while minimizing the plutonium production. Its physics and burnup characteristics are analyzed, and the results are compared with LWR UO2 and mixed-oxide fuel.