ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. T. Friend, R. F. Wright, R. Hundal, L. E. Hochreiter, M. Ogrins
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 19-42
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2848
Articles are hosted by Taylor and Francis Online.
As part of the AP600 design certification program, a series of component separate effects tests and two integral systems tests of the nuclear steam supply system were performed. These tests were designed to provide data necessary to validate Westinghouse safety analysis codes for AP600 applications. In addition, the tests have provided the opportunity to investigate the thermal-hydraulic phenomena that are expected to be important in AP600 transients. One series of integral systems tests was undertaken on the SPES-2 facility in Italy, a full-height, full-pressure, 1/395th-power and -volume scale simulation of the AP600 nuclear steam supply system and passive safety features. A series of thirteen design-basis events were simulated at SPES-2 to obtain data for verification and validation of the computer models used for the safety analysis of the AP600. The modeled initiating events included a series of small-break loss-of-coolant accidents (SBLOCAs), single steam generator tube ruptures, and a main steam-line break.The results of the analyses of the SPES-2 test data, performed to investigate the performance of the safety-related systems are reported. These analyses were also designed to demonstrate, through mass and energy inventory calculations, mass and energy balances, and event timing analyses, the applicability of the SPES-2 tests for computer model verification and validation. The key thermal-hydraulic phenomena simulated in the SPES-2 tests and the performance and interactions of the passive safety-related systems that can be investigated through the SPES-2 facility are emphasized. The latter includes the impact of accumulator nitrogen and nonsafety-related system actuation on the passive safety-related system performance.It is concluded that the key thermal-hydraulic phenomena that characterize the SBLOCA and non-LOCA transients have been successfully simulated in the SPES-2 facility, and the test results can be used to validate the AP600 safety analysis computer codes. The SPES-2 tests demonstrate that the AP600 passive safety-related systems successfully combine to provide a continuous removal of core decay heat. The SPES-2 tests also showed no adverse interactions between the passive safety-related system components or with the nonsafety-related systems. In particular, it was found that the effect of noncondensable nitrogen on passive safety-related system performance was negligible.