ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Clyde E. Milstead, Wayne E. Bell, J. H. Norman
Nuclear Technology | Volume 7 | Number 4 | October 1969 | Pages 361-366
Material | doi.org/10.13182/NT69-A28478
Articles are hosted by Taylor and Francis Online.
The deposition of iodine on low chromium-alloy steel (1% Cr—1/4% Mo alloy) has been investigated in vacuo at 316, 400, and 482°C using a pseudoisopiestic (static) method. An adsorption isotherm was obtained at 400°C over an iodine (monotomic) pressure range of 2.9 × 10-9 to 5.1 × 10-7 atm. The levels of iodine deposition at 400°C ranged from 3.8 to 23.2 µg I/cm2; these values are in agreement with data obtained using transpiration techniques. The low-level sorption data are interpreted on the basis of the dissociation of I2 to yield monatomic iodine as well as the interaction with the steel surface to form volatile iron iodides, which were deposited in cooler regions of the apparatus. The high-level sorption behavior of iodine on steel is in accord with the expected behavior based on the thermodynamic properties of FeI2(s).