ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michelle Pitts, Farzad Rahnema, Tom G. Williamson, Fitz Trumble
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 1-18
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2847
Articles are hosted by Taylor and Francis Online.
Hundreds of criticality experiments were performed at Oak Ridge National Laboratory in the 1950s. Several sets of these experiments were used to determine the critical properties of 233U and 235U. Here, four sets are analyzed to provide benchmark descriptions for validation of computational tools used by nuclear criticality specialists. All four sets were performed in water-reflected spherical geometry and contained a highly enriched uranyl fluoride solution (93.18% 235U) with the hydrogen-to-fissile ratio of measurements ranging from 35.8 to 1272. The scope of these experiments spans the minimum values of the subcritical mass limit curve. One experiment was never reported in the open literature, and three experiments were performed at elevated temperatures. An uncertainty in the experimental keff was found by sensitivity studies on reported measurement uncertainties, inconsistencies, and omissions in experimental parameters. To be useful for all computer codes, one-dimensional benchmark configurations were determined for all sets of experiments. The descriptions can be used to find bias values for a code/cross-section package. The keff values for similar configurations can then be corrected using the bias values. The sensitivity analysis of the experiments was performed using ONEDANT with 27-group ENDF/B-IV cross sections and MCNP with continuous-energy ENDF/B-V cross-section data. The keff values for both one- and three-dimensional configurations were found using MCNP with ENDF/B-V and ENDF/B-VI cross-section data. The values for keff for the one-dimensional configuration were also found by using ONEDANT and KENO V.a with Hansen-Roach and 27-group ENDF/B-IV cross sections.