ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. Edison, G. A. Whitlow
Nuclear Technology | Volume 7 | Number 5 | November 1969 | Pages 443-455
Fuel | doi.org/10.13182/NT69-A28447
Articles are hosted by Taylor and Francis Online.
The development of vanadium alloys as fuel element cladding materials in sodium-cooled, ceramic-fueled fast breeder reactors was reviewed. Compared to stainless steel, certain vanadium alloys have advantageous nuclear and thermal characteristics, elevated temperature strength, and potential resistance to fast-neutron embrittlement. The compatibility of vanadium alloys with flowing sodium and with ceramic fuels was identified as an area in which more data are necessary. A comparison of economics and performance was made for vanadium-alloy and stainless-steel cladding in a carbide-fueled LMFBR. The power costs depended strongly on the projected fabrication cost of vanadium-alloy and stainless-steel tubing. Several fabrication costs as well as different cladding thicknesses were considered. For a core coolant outlet temperature of 110°F in the vanadium designs, an economic break even point with 316-SS was reached at vanadium-alloy tubing costs of ∼$3.50/ft in the vented design and $2.85/ft in the nonvented design. Stainless steel was considered inadequate at that coolant temperature. With the core coolant outlet temperature at 1 000°F in all core designs, the economic break even vanadium tubing cost was ∼30% lower. Power costs were generally a few hundredths of a mill/kWh higher with vanadium cladding at the same burnup. This cost differential could be eliminated since vanadium alloys may be capable of a slightly higher burnup than stainless steel, due to their higher end-of-life ductility. Differences in nuclear performance characteristics such as fuel inventory, breeding ratio, and doubling time were <1% for all cladding materials and thicknesses studied. Doppler and sodium-void reactivity effects were 5 to 10% more favorable with vanadium-alloy cladding than with stainless steel. Based upon the available economic and performance data, a vanadium alloy appears to be an attractive potential alternate to stainless steel for LMFBR cladding.