ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert N. Endebrock, Walter H. D'Ardenne, Warren F. Witzig
Nuclear Technology | Volume 7 | Number 5 | November 1969 | Pages 415-424
Reactors Siting | doi.org/10.13182/NT69-A28444
Articles are hosted by Taylor and Francis Online.
An underwater siting guide for use in international and territorial waters must be created to evaluate the consequences of the release of fission products from a nuclear reactor sited in the ocean. This paper is an initial attempt to develop the basic equations for such a guide. A very conservative fission-product-release inventory to illustrate undersea application is developed consisting of 100% of the soluble and 1% of the insoluble fission products or ∼66% of the gross fission-product inventory. The ocean is divided into four distinct zones for which current velocity profiles and characteristic diffusion parameters are established. Based upon a three-dimensional diffusion model incorporating shear effect and with the assumptions of no current variance, zero mean vertical current velocity, and depletion of the inventory by radiological decay only, equations are presented which describe the physical transport and dispersion of the radioisotopes. A computer program, SEADIF, is applicable to a person immersed in the water and is used to determine, for both contained and uncontained systems, the distance factors and the radioisotope concentrations as a function of time and position. Representative results for a 10 MW(th) system are given.