ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
John M. Sorensen, Nicholas G. Trikouros
Nuclear Technology | Volume 121 | Number 3 | March 1998 | Pages 313-323
Technical Paper | RETRAN | doi.org/10.13182/NT98-A2843
Articles are hosted by Taylor and Francis Online.
Core shroud cracking has been observed in several boiling water reactors (BWRs) since 1993. A current U.S. Nuclear Regulatory Commission concern is the response of a cracked core shroud to loads resulting from the main steam-line-break loss-of-coolant accident (MSLOCA). Core shroud loads and responses have been calculated by GPU Nuclear Corporation (GPUNC) for the Oyster Creek BWR/2 using the RELAP5 computer code. The objectives of the RETRAN-02 analysis performed by S. Levy Incorporated were to assess the capability of RETRAN-02 to simulate an MSLOCA and to obtain an independent validation of the GPUNC results.A main steam-line break will result in rapid depressurization of the steam dome and an upward pressure load over the shroud head. This upward force has the potential to cause separation and displacement of the shroud head if the shroud head contains a 360-deg through-wall flaw.The key parameters and phenomena affecting the core shroud head pressure differential following the initiation of the MSLOCA are critical flow through the vessel side of the steam-line break; pressure wave dynamics in the steam lines; depressurization rate of the vessel steam dome; flow inertia and pressure drop of the steam dryers, steam separators, and standpipes; and flashing of saturated liquid in the upper plenum and reactor core.The key parameters and phenomena affecting the core shroud head lift are the core shroud head mass above the cracked weld, the core shroud head projected area, and the characteristics of the shroud weld crack leakage flow path from the core bypass to the vessel downcomer annulus.Comparison of RELAP5 and RETRAN-02 calculation results shows good agreement for the transient core shroud head pressure drop and lift predictions by the two methods. An important element in simulating this rapid transient, for both RELAP5 and RETRAN-02, is the ability to calculate the shroud head loading and lift through the use of control block elements and to directly couple the effect of flow through the shroud weld crack leakage flow path to the upper plenum thermal hydraulics.