ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
John M. Sorensen, Nicholas G. Trikouros
Nuclear Technology | Volume 121 | Number 3 | March 1998 | Pages 313-323
Technical Paper | RETRAN | doi.org/10.13182/NT98-A2843
Articles are hosted by Taylor and Francis Online.
Core shroud cracking has been observed in several boiling water reactors (BWRs) since 1993. A current U.S. Nuclear Regulatory Commission concern is the response of a cracked core shroud to loads resulting from the main steam-line-break loss-of-coolant accident (MSLOCA). Core shroud loads and responses have been calculated by GPU Nuclear Corporation (GPUNC) for the Oyster Creek BWR/2 using the RELAP5 computer code. The objectives of the RETRAN-02 analysis performed by S. Levy Incorporated were to assess the capability of RETRAN-02 to simulate an MSLOCA and to obtain an independent validation of the GPUNC results.A main steam-line break will result in rapid depressurization of the steam dome and an upward pressure load over the shroud head. This upward force has the potential to cause separation and displacement of the shroud head if the shroud head contains a 360-deg through-wall flaw.The key parameters and phenomena affecting the core shroud head pressure differential following the initiation of the MSLOCA are critical flow through the vessel side of the steam-line break; pressure wave dynamics in the steam lines; depressurization rate of the vessel steam dome; flow inertia and pressure drop of the steam dryers, steam separators, and standpipes; and flashing of saturated liquid in the upper plenum and reactor core.The key parameters and phenomena affecting the core shroud head lift are the core shroud head mass above the cracked weld, the core shroud head projected area, and the characteristics of the shroud weld crack leakage flow path from the core bypass to the vessel downcomer annulus.Comparison of RELAP5 and RETRAN-02 calculation results shows good agreement for the transient core shroud head pressure drop and lift predictions by the two methods. An important element in simulating this rapid transient, for both RELAP5 and RETRAN-02, is the ability to calculate the shroud head loading and lift through the use of control block elements and to directly couple the effect of flow through the shroud weld crack leakage flow path to the upper plenum thermal hydraulics.