ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
N. I. Sax, J. C. Daly, J. J. Gabay
Nuclear Technology | Volume 7 | Number 1 | July 1969 | Pages 106-112
Technique | doi.org/10.13182/NT69-A28392
Articles are hosted by Taylor and Francis Online.
The stack effluent of a nuclear fuel reprocessing plant would be expected to contain sufficient tritium to serve as a radioactive tracer for the plume. In order to make use of this built-in tracer, a silica gel sampler for tritiated moisture was developed, which permits large scale sampling. An intensive study of the area surraunding Nuclear Fuel Services, Inc. was undertaken during the summer of 1967 to determine experimentally the maximum concentration (Cmax) of the stack effluent using tritiated moisture as the tracer. Sampling legs that radiated from the stack were established. During a two-month period >700 samples were collected on 7 sampling legs. The average tritium radioactivity on the sampling leg northwest of the plant (leg G) exceeded 1000 tritium units (TU) 71% of the time for the 28 sampling periods studied. In 11 of 28 cases a maximum concentration of >3000 TU occurred. It was definitely demonstrated that a Cmax can be determined by tracing with tritiated moisture. Based on experimental Cmax values, an estimate of the emission rate, Q, was made under various meteorological conditions. The possibility of a secondary saurce of tritiated moisture influencing measurement of stack-emitted tritium was considered.