ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. J. Ritts, M. Solomito, P. N. Stevens
Nuclear Technology | Volume 7 | Number 1 | July 1969 | Pages 89-99
Technique | doi.org/10.13182/NT69-A28390
Articles are hosted by Taylor and Francis Online.
Fluence-to-kerma factors (where fluence is the time-integrated neutron flux and kerma is equal to the total kinetic energy released in materials resulting from direct neutron interaction per unit mass of the irradiated medium) were calculated at discrete neutron energies from 0.025 eV to 15 MeV for various compositions of the human body—tissue, muscle, bone, lung, brain, red marrow, and the “standard man” composition. The 11 most common elements in man were considered and the latest cross sections used. An attempt was made to include all significant reactions, namely elastic scattering with an anisotropic correction, inelastic scattering, neutron capture, (n, 2n) reactions, (n, charged particle) reactions, and beta or positron emissions from these reactions. These calculations show improvements in the entire energy range over previously reported neutron kerma factors.