ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
R. Carlander, S. D. Harkness, F. L. Yaggee
Nuclear Technology | Volume 7 | Number 1 | July 1969 | Pages 67-75
Material | doi.org/10.13182/NT69-A28387
Articles are hosted by Taylor and Francis Online.
Tensile properties of irradiated Type-304 stainless steel have been measured. These results have been correlated with microstructural observations obtained by optical and transmission electron microscopy techniques. The material studied was irradiated in a fast-neutron environment to a peak exposure of 4.8 × 1022 n/cm2 at temperatures ranging from 371 to 463°C in the EBR-II reactor. True yield stresses were observed to increase, and true uniform strains to decrease with both increasing neutron exposure and decreasing irradiation temperature for test temperatures <750°C. At 750°C no increases in true yield stresses over control values were noted while sharp decreases in true uniform strains were observed. It is suggested that some annealing of the microstructure occurs at this elevated temperature, allowing helium to be accumulated at grain boundaries. Microstructural examination by transmission electron microscopy revealed homogeneous distributions of polyhedral voids and Frank dislocation loops. Neither deject was observed to form on grain boundaries. It is suggested that the dislocation loop formation is primarily responsible for the increased strength of the irradiated material. Immersion density measurements are included. These results indicate that the peak void formation did not occur at the maximum flux position, thus indicating the importance of temperature to the phenomenon.