ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
C. D. Baumann, P. E. Reagan
Nuclear Technology | Volume 7 | Number 6 | December 1969 | Pages 537-549
Fuel | doi.org/10.13182/NT69-A28373
Articles are hosted by Taylor and Francis Online.
Mathematical models describing idealized mechanisms of fission-gas release were used as criteria to determine the mode of release from fully enriched UCrfueled pyrocarbon-coated particles that had slightly 235U-contaminated outer coatings. Below 1600°C the release of krypton, and probably iodine and xenon, was due to fissions which occurred in the contaminated outer coating, with the products escaping by solid-state diffusion from the coating. Above 1600°C the krypton release increased more rapidly with temperature. The krypton originated in the fuel core and traversed the outer coating either by solid-state diffusion or Knudsen flow through micropores in the outer coating. The overall increase in release rate with time was probably due to migration of the 235U initially in the outer coating, and to the over five-fold increase in 235U contamination of the outer coating during irradiation.