ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
K. C. Thomas, E. C. Bishop, G. A. Whitlow
Nuclear Technology | Volume 7 | Number 2 | August 1969 | Pages 144-154
Radioisotopes | doi.org/10.13182/NT69-A28358
Articles are hosted by Taylor and Francis Online.
Vandium alloys have been identified as one of the leading alternate cladding materials for liquid-metal-cooled fast breeder reactors for circumventing the possible limitations of austenitic stainless steels. Two of the more important aspects of this usage on which little information is available are sodium corrosion and compatibility with ceramic fuels. In this study, a series of experimental vanadium alloy compositions were found to increase in weight and in hardness after 500-h exposure to flowing sodium containing <10 ppm oxygen at ∼790°C; these changes are due to the absorption of oxygen, carbon, and nitrogen. In 1000-h tests at 800°C, some incompatibility was observed only between vanadium alloys containing iron and uranium-carbide fuel. However, these screening tests have identified three vanadium alloy compositions as worthy of further study.