ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Nuclear Technology | Volume 7 | Number 2 | August 1969 | Pages 128-138
Reactors | doi.org/10.13182/NT69-A28356
Articles are hosted by Taylor and Francis Online.
In the design of irradiation experiments, prediction of the perturbation of the thermal-neutron flux by the experiment test specimens is frequently a problem. In order to obtain a model for calculating these perturbation effects, an experimental study was performed. A cylindrical shape was selected as being most typical of irradiation test specimens, and measurements of perturbation effects were made for several cylinders having different dimensions and made from different materials. Regression analysis was used to obtain polynomials from these measurements. These polynomials can be used to predict the flux perturbation, depression, and self-shielding factors as functions of cylinder materials and dimensions and control-rod position. The polynomials include a wide range of sizes and materials so that almost any cylindrical specimen that might be found in a typical irradiation capsule can be evaluated. In general, the error at the fitted points was only a few percent over the range of variables corresponding to most common materials and dimensions. In many cases, the polynomials have several distinct advantages over numerical models or mockup measurements. They are general (insofar as a cylinder is a typical shape for reactor test specimens), and they are simple to use since they require no computer calculations or reactor time. Also, their uncertainty can be established quantitatively (excluding the uncertainty due to reactor differences). These measurements were made in the Plum Brook test reactor. Because this is a typical reactor configuration (light-water moderated, MTR-type fuel elements with metal-to-water ratio of 0.75) much like many other reactors that can be found in industry and government today, these results should be generally useful. For reactors differing from this typical configuration, the results can be used to estimate flux perturbation effects after consideration is given to basic reactor differences. Also, we feel that the success we have experienced with this approach to the perturbation problem will be of interest to others confronted with this problem and having the facilities to repeat these measurements for their reactor.