ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
L. E. Hansen, E. D. Clayton
Nuclear Technology | Volume 6 | Number 4 | April 1969 | Pages 381-390
Technical Papers and Note | doi.org/10.13182/NT69-A28348
Articles are hosted by Taylor and Francis Online.
Lack of experimental data for nuclear criticality control over operations with plutonium necessitates the use of computed critical parameters for guidance. To provide guidelines for criticality safety use, survey calculations for unreflected and water-reflected spheres, semi-infinite cylinders, and semi-infinite slabs have been made, using calculational techniques confirmed by available experimental data. The Pu(metal)-water mixtures examined cover the entire range of possible moderation ratios and have isotopic 240Pu contents of 20%. Critical experiment data for water-reflected spherical systems containing Pu(NO3)4 solutions with 435g Pu/liter at 4.6 wt% 240Pu were extrapolated by means of calculations to 239Pu(metal)-water mixtures for a direct comparison between calculations and experimentally derived critical parameters. The effect of 240Pu on criticality was examined as a function of both concentration and geometry. The manner in which 240Pu affected the minimum critical mass of Pu(metal)-water systems was also determined.