ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. E. Hansen, E. D. Clayton, R. C. Lloyd, S. R. Bierman, R. D. Johnson
Nuclear Technology | Volume 6 | Number 4 | April 1969 | Pages 371-380
Technical Papers and Note | doi.org/10.13182/NT69-A28347
Articles are hosted by Taylor and Francis Online.
To predict the critical parameters of plutonium fueled systems one must establish the accuracy of the computational methods to be employed and the accuracy and applicability of the available critical experiment data with which the calculations are to be compared. The accuracy of a multigroup diffusion theory code, HFN, and a multigroup transport theory code, DTF-IV, was examined by analyzing recent plutonium critical experiments. The experiments cover the entire range of possible moderation ratios, and the plutonium fuels contain as much as 23.2 isotopic percent 240Pu. All three basic geometries are represented by the experimental data examined. Where necessary, the criticality data were corrected, by means of additional experiments and/or calculations, to conform to one-dimensional, clean, homogeneous critical assemblies which could be adequately defined and used as a basis for establishing nuclear criticality safety guidelines.