ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Kurt Goldmann, John M. Mckee
Nuclear Technology | Volume 6 | Number 4 | April 1969 | Pages 321-331
Technical Papers and Note | doi.org/10.13182/NT69-A28340
Articles are hosted by Taylor and Francis Online.
Liquid potassium was circulated between 1200 and 1600°F in 31 Type-316 stainless-steel thermal convection loops and one forced circulation loop. Each loop contained a string of niobium-1% zirconium (Nb-1% Zr) alloy and stainless-steel test specimens positioned along the entire heated leg. To follow corrosion as a function of time and temperature, the test specimens were examined at 500 to 2500 h intervals. Controlled additions of interstitial impurities to the potassium were made in some thermal convection loops at the start of the test. Oxygen additions to the potassium sharply accelerated the initial rate of Nb-1% Zr surface removal but produced no identifiable oxide film or microstructural changes. The initially high weight-loss rates, observed in oxygen addition loops, decayed rapidly with time, returning essentially to normal rates (in the absence of further oxygen additions) after 2500 h. Oxygen additions produced very little effect on the stainless-steel corrosion rates, presumably due to rapid gettering of the added oxygen by the Nb-1% Zr. Similar tests in a forced circulation loop, with potassium velocities past the test specimens 18 times higher than in the thermal convection loops, showed that any effects of velocity on the Nb-1% Zr corrosion rate were far overshadowed by effects that are assumed to be related to oxygen in the potassium.