ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. I. Federer, W. C. Robinson, Jr., F. H. Patterson
Nuclear Technology | Volume 6 | Number 4 | April 1969 | Pages 298-306
Technical Papers and Note | doi.org/10.13182/NT69-A28337
Articles are hosted by Taylor and Francis Online.
The feasibility of preparing UO2 powder in a flame reactor was demonstrated by reacting UF6 with hydrogen and oxygen. In the flame reactor, the reactants combine in a flame at the end of an injector contained within a reaction chamber. The reaction was conducted with stoichiometric quantities of reactants and with mixtures containing excess hydrogen or oxygen. The reaction was found to be self-sustaining after ignition with an HF flame, which was used in initial experiments to supply heat for the reaction. X-ray diffraction of the powder product indicated that UO2 and U3O8 were the principal reaction products, occurring sometimes with other compounds. The crystallite size of as-prepared powder ranged from about 0.012 to 0.038 µm; however, sieve analyses showed that the powder was highly agglomerated. The as-prepared powder contained ∼ 4 to 14 wt% F, but heat treatment at 1000°C in hydrogen reduced the fluorine content to ≤ 30 ppm. The defluorination heat treatment increased the crystallite size to about an order of magnitude. Pellets pressed from defluorinated powder sintered to 95% of theoretical density at 1400°C.