ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Richard Storck, Dieter Buhmann
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 212-220
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2833
Articles are hosted by Taylor and Francis Online.
Differences in technical concepts for direct disposal of spent fuel and for disposal of high-level waste (HLW) from reprocessing are discussed. The preferred emplacement sites for spent-fuel elements are drifts instead of boreholes, which are used for vitrified HLW. The nuclide inventories of uranium and plutonium are considerably higher with direct disposal. The impact of these conceptual differences on the long-term safety of a repository in a salt formation is investigated.The deterministically calculated radiation exposures for direct disposal and for disposal of reprocessed waste are both within the limits of the German licensing criterion. Furthermore, the differences in the radiation exposures are low, so from this point of view, neither concept is preferable. This result is surprising because the higher inventories of uranium and plutonium in the concept of direct disposal have a negligible influence on radiation exposure. It is shown that the layout temperature of a repository is a parameter influencing long-term safety, where higher layout temperatures are favorable.