ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Bruce W. Wilkinson, Wayne H. Clifford
Nuclear Technology | Volume 6 | Number 5 | May 1969 | Pages 499-508
Technical Papers and Note | doi.org/10.13182/NT69-A28327
Articles are hosted by Taylor and Francis Online.
In the irradiation of powders it is desirable to utilize completely the radiation beam while assuring a uniform irradiation of the product. When an electron beam is the radiation source, this is usually done by spreading the particles on a conveyor belt with a carefully controlled thickness of product. Non-uniform product thickness and depth-dose variations of the beam make the desired goals difficult to achieve. In the present work, the particulate material (methyl cellulose) was maintained in a fluidized state while the electron beam was injected into the bed. Complete utilization of the beam striking the bed was thus achieved and the product was shown to have been irradiated uniformly. The fluidized bed was operated under both batch and continuous feed conditions. In addition, it was observed that a comparable degradation of the methyl cellulose required only about half the radiation exposure needed with thin layer processing. Factors that may be responsible for this effect are discussed.