The radiolysis of CF4, alone and mixed with UF6, UF6 + N2, UF6 + Ar, UF6 + Xe, UF6 + SF6, and UF4 + C by gamma photons from 60Co or by fission fragments from 235U gave C2F4 as the principal product. Traces of C2F6O and C3F3O were also found. In the gamma irradiation of CF4 + UF4 + C, charcoal acted as a fluorine scavenger and increased the consumption of CF4, but N2, Ar, Xe, and SF6 showed no measurable scavenging effects. During the fission fragment irradiations, C, N2, and Xe acted as scavengers, but such action by Ar or SF6 was not detected. The results for 60Co gamma irradiations and for fission fragment irradiations could be explained by a dynamic interconversion between CF4 and the products C2F4 and F2. A mathematical model that related the extent of interconversion with energy deposition was formulated.