ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Michael Langer, Manfred Wallner
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 199-211
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2832
Articles are hosted by Taylor and Francis Online.
Site-specific data of the Gorleben salt dome (e.g., the geological structure of the salt dome and the geomechanical properties of the evaporite) are presented in the form of a working model to optimize the various repository concepts discussed within the German research project "Direct Disposal of Spent Fuel" and to compare their long-term effects.A comparative evaluation of the different emplacement concepts was made on the basis of the following calculated results, which are considered decisive: temperatures in the repository, temperatures in the salt dome/overburden transition zone, tensile stresses at the top of the salt dome zone, and uplift at the ground surface.The thermal and thermomechanical consequences of four preselected emplacement concepts do not differ very much. The rock mechanical analyses of the far field do not indicate any particular concept as being clearly preferable.The following results of the parameter variations (creep capacity and width of the repository field) are significant. A reduction in the repository field width gives lower maximum temperatures for the same specific heat load. An evaporite formation with a high creep capacity leads to significantly lower stress reduction at the top of the salt dome; tensile stresses do not occur. The stress reductions at the top of the salt dome are also less, but the horizontal stress orthogonal to the repository still lies in the tensile zone, if a low creep capacity of the rock salt is assumed.