This report describes work concerning production of coated-particle fuels for use in high-temperature, gas-cooled reactors (HTGR's) and a coating system that has served as the basis for the design of a remotely operated recycle fuel fabrication system. We have demonstrated an ability to deposit low-and high-density pyrolytic carbon coatings having a variety of properties on a scale adequate to satisfy the proposed Thorium Uranium Recycle Facility production rate, 10 kg of heavy metal fuel per day. To do this, we have designated an engineering scale, 5-in.-i.d. fluidized bed coating furnace and its auxiliaries. Additionally, we have identified process controlling parameters and demonstrated their effect on inner- and outer-coating properties produced from acetylene, propane, and propylene. Specific coating properties controlled were density, thickness, anisotropy factor, coating rate, and deposition efficiency. Parameters identified include: bed temperature, gas purity, gas flux, inert-gas dilution, charge size, kernel composition, kernel size, and components configuration.