ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Tilmann Rothfuchs, Johannes Droste, Hans-Karl Feddersen, Stefan Heusermann, Jörn U. Schneefuss, Alexandra Pudewills
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 189-198
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2831
Articles are hosted by Taylor and Francis Online.
The thermal simulation of drift storage (TSS) full-scale test is being performed in the Asse salt mine in Germany to study the thermomechanical effects of the direct disposal of spent-fuel elements in a nuclear salt repository. The test field comprises two parallel test drifts, in each of which three dummy casks are deposited. The remaining volume of the drifts is backfilled with crushed salt. The casks are equipped with electrical heaters with a thermal power output of 6.4 kW each. The test has been in operation since September 1990. A design temperature of ~210°C at the surface of the heater casks was reached after 5 months. Because the thermal conductivity of the backfill increases with its compaction, the temperature at the surface of the casks subsequently decreased, reaching ~170°C after 5 yr of heating. The drift closure, which causes increasing compaction of the backfill, was considerably accelerated by heating. However, the initial backfill porosity of 35% decreased more slowly than predicted, to ~27% in the heated area at the end of 1995. The average backfill pressure has currently reached 18% of the initial vertical stress in the test field area, which has been estimated at ~12 MPa. Studies of water and gas releases from the backfill material reveal significant increases of carbon dioxide, methane, and hydrogen concentrations due to heating. In situ measurements will be continued in the coming years to study further thermomechanical reactions of the backfill and the surrounding rock salt to the heat input.