ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
James H. Leonard
Nuclear Technology | Volume 6 | Number 3 | March 1969 | Pages 202-208
Technical Paper and Note | doi.org/10.13182/NT69-A28307
Articles are hosted by Taylor and Francis Online.
Chromel/Alumel thermocouples were calibrated at the temperatures of boiling water and melting tin and lead before, during, and after exposure to several cycles of nuclear radiation. A temporary calibration shift of up to 50 µ V was observed at all three calibrating temperatures persisting for at least one hour following cessation of exposure. Comparison with corresponding data from a previous experiment indicates that the relative location of flux and temperature gradients along the thermocouple leads has a major influence on the magnitude of decalibration encountered. The effect is attributed to radiation-produced scattering centers subject to self-annealing processes. For in-pile thermocouple installations, temperature gradients should be restricted to locations outside high-flux regions to minimize potential radiation-dependent, decalibrating effects.