ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Bernd Grambow, Andreas Loida, Emmanuel Smailos
Nuclear Technology | Volume 121 | Number 2 | February 1998 | Pages 174-188
Technical Paper | German Direct Disposal Project | doi.org/10.13182/NT98-A2830
Articles are hosted by Taylor and Francis Online.
The results are summarized of 15 yr of German research on spent fuel with respect to its suitability as a waste form disposed of in a repository located in the Gorleben salt dome. Within the multibarrier system for long-term isolation of high-level waste (HLW), the innermost engineered barrier "canistered spent fuel" contributes essentially to isolating radionuclides from the biosphere if a salt brine were to come into contact with the waste form. A large fraction of the radionuclide contents of the reacted fuel mass would become reimmobilized within secondary alteration products and on container corrosion products, but inevitably a certain nuclide-specific fraction would be released into the aqueous geochemical environment. The corrosion resistance of the fuel and the radionuclide mobility are not inherent materials properties but also depend on geological disposal conditions, packing concepts, and radioactive decay. In particular, the availability of oxidants is critical, controlling spent-fuel alteration rates and alteration products as well as radionuclide solubilities. Spent fuel is at least as suitable for final disposal as is HLW glass.