ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Charles C. McPheeters, John C. Biery
Nuclear Technology | Volume 6 | Number 6 | June 1969 | Pages 573-581
Technical Paper and Note | doi.org/10.13182/NT69-A28287
Articles are hosted by Taylor and Francis Online.
The characteristics of a sodium-system plugging indicator have been studied with the instrument operated in both the bare orifice and partially plugged modes. The “plugging temperature” produced when the orifice is initially bare indicates the point where nucleation of the impurity is first noted and is strongly influenced by flow rate and cooling rate. Thus, in the bare orifice mode the meter must be calibrated to produce oxygen concentration as a function of plugging temperature. In the partially plugged mode, saturation temperature is indicated each time a flow rate arrest occurs, and, therefore, no calibration is required. Also, with Na2O on the orifice, the rate of flow increase or decrease through the orifice permits the calculation of mass transfer coefficients for the dissolution or precipitation of Na2O.