ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
R. T. Allen, R. E. Duff
Nuclear Technology | Volume 6 | Number 6 | June 1969 | Pages 567-572
Technical Paper and Note | doi.org/10.13182/NT69-A28286
Articles are hosted by Taylor and Francis Online.
Finite difference techniques for the solution of the motion of an elastic-plastic solid are used to investigate the effect of rock strength and the cavity gas properties on the cavity size formed by a nuclear explosion. The material description includes the effect of pressure and temperature on the yield surface and the change of material description in the solid, liquid, and vapor phases. The results presented indicate a strong dependence of cavity size on the rock strength and a considerably lower sensitivity to the ideal gas coefficient, γ, assumed for the cavity gas. The results suggest that the cavity sizes observed in nuclear field tests can be better correlated with calculations by assuming strength parameters considerably lower than observed in laboratory tests on competent rock samples.