ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
T. Roger Billeter, D. P. Brown, W. G. Spear
Nuclear Technology | Volume 6 | Number 1 | January 1969 | Pages 73-80
Technical Papers and Note | doi.org/10.13182/NT69-A28270
Articles are hosted by Taylor and Francis Online.
Techniques and instrumentation at microwave frequencies show promise for measuring both temperature and gas coolant impurities within high-temperature nuclear reactors. Temperature is measured as a result of the thermal expansion of a metallic sensor, while impurities can be detected by their effect upon the coolant dielectric constant. An experimental Ni-Cr steel microwave cavity, resonant at 15 GHz, yielded a linear output signal for variations of temperature to 1250°C with a sensitivity of 330 kHz/°C. For gas coolant impurity measurements, both a microwave cavity method and a phase-shift method provided desired speed of response and sensitivity. Tests with the interferometer-type impurity measuring instrument indicate a sensitivity of ∼ 4 × 10−4 degrees phase shift/[(ppm)m] for water vapor in helium gas and a time constant of 1 sec for step changes in impurity content.