ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
S. S. Christopher, J. J. Koziol, D. E. Mahagin
Nuclear Technology | Volume 6 | Number 1 | January 1969 | Pages 47-55
Technical Papers and Note | doi.org/10.13182/NT69-A28266
Articles are hosted by Taylor and Francis Online.
Two fuel elements containing 0.05 wt% B4 C in 6% enriched UO2, were irradiated in the Saxton reactor to burnups of ∼1000 and 5000 MWd per metric ton of uranium at peak heat ratings of 17.2 and 19.8 kW/ft, respectively. These elements were fabricated by vibratory compaction to densities of 88 ± 2% of theoretical with local boron concentrations maintained within a variation of ∼ ± 20% of the nominal loading. The postirradiation examination revealed no significant dimensional changes in either element and no axial boron redistribution of any consequence. However, the boron migrated radially outward in both irradiated fuel elements. The boron redistribution does not appear to be a function of burnup but depends heavily on the thermal gradient during irradiation. Its effect on core physics was analyzed using the THERMOS program, and the changes in ηf(ratio of neutrons produced to thermal neutrons absorbed) and Δρ (difference in core reactivity) were found to be minimal.