ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. S. Cheka, K. Becker
Nuclear Technology | Volume 6 | Number 2 | February 1969 | Pages 163-167
Technical Paper and Note | doi.org/10.13182/NT69-A28248
Articles are hosted by Taylor and Francis Online.
Glass dosimeters with low dependence on energy (< ± 20% between < 10 keV and several MeV) have been made by activating lithium borates (Li2O, xB2O3, x = 2 − 4) with small amounts (≤ 0.5%) of silver. The radiation-induced absorption spectrum between 250 and 400 nm is more complex than in a commercial Ag-activated phosphate glass. Several peaks undergo a buildup prior to fading. At, and above, room temperature, the optical absorption, in particular for peaks <300 nm, is considerably more stable than in the phosphate glass (in one borate glass, for example, the absorption at 278 nm is constant within ± 12% for 10 h at 200°C). The absorption spectrum after thermal-neutron radiation is different from the gamma-radiation-induced spectrum. The density is a linear function of exposure.