ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
J. S. Cheka, K. Becker
Nuclear Technology | Volume 6 | Number 2 | February 1969 | Pages 163-167
Technical Paper and Note | doi.org/10.13182/NT69-A28248
Articles are hosted by Taylor and Francis Online.
Glass dosimeters with low dependence on energy (< ± 20% between < 10 keV and several MeV) have been made by activating lithium borates (Li2O, xB2O3, x = 2 − 4) with small amounts (≤ 0.5%) of silver. The radiation-induced absorption spectrum between 250 and 400 nm is more complex than in a commercial Ag-activated phosphate glass. Several peaks undergo a buildup prior to fading. At, and above, room temperature, the optical absorption, in particular for peaks <300 nm, is considerably more stable than in the phosphate glass (in one borate glass, for example, the absorption at 278 nm is constant within ± 12% for 10 h at 200°C). The absorption spectrum after thermal-neutron radiation is different from the gamma-radiation-induced spectrum. The density is a linear function of exposure.