ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. F. Kunze, G. D. Pincock, R. E. Hyland
Nuclear Technology | Volume 6 | Number 2 | February 1969 | Pages 104-115
Technical Paper and Note | doi.org/10.13182/NT69-A28241
Articles are hosted by Taylor and Francis Online.
The cavity reactor concept consists of a core, generally of dilute fuel, surrounded by a moderating reflector. This concept has long been considered as a means of attaining very high temperatures in a gaseous core, since the fuel need not be in contact with structural material. A number of critical experiments have been performed on configurations of different core size and shape, with different structural material thicknesses between the cavity and reflector, with different coolant densities surrounding the core, and with various other alterations. The principal purpose was to evaluate the effects of engineering design variables for a cavity propulsion reactor concept. Experiments reveal that a power reactor with the required structure and a cavity size 182.9 cm (6 ft) in diameter by 121.9 cm (4 ft) long can be expected to have a critical core loading of between 20 and 30 kg of 235U.