ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. F. Kunze, G. D. Pincock, R. E. Hyland
Nuclear Technology | Volume 6 | Number 2 | February 1969 | Pages 104-115
Technical Paper and Note | doi.org/10.13182/NT69-A28241
Articles are hosted by Taylor and Francis Online.
The cavity reactor concept consists of a core, generally of dilute fuel, surrounded by a moderating reflector. This concept has long been considered as a means of attaining very high temperatures in a gaseous core, since the fuel need not be in contact with structural material. A number of critical experiments have been performed on configurations of different core size and shape, with different structural material thicknesses between the cavity and reflector, with different coolant densities surrounding the core, and with various other alterations. The principal purpose was to evaluate the effects of engineering design variables for a cavity propulsion reactor concept. Experiments reveal that a power reactor with the required structure and a cavity size 182.9 cm (6 ft) in diameter by 121.9 cm (4 ft) long can be expected to have a critical core loading of between 20 and 30 kg of 235U.