ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tohru Nakatsuka, Yoshiaki Oka, Seiichi Koshizuka
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 81-92
Technical Paper | Reactor Operations and Control | doi.org/10.13182/NT98-A2821
Articles are hosted by Taylor and Francis Online.
The plant system of a supercritical-water-cooled reactor is the once-through direct-cycle type, where steam-water separators and coolant recirculation systems are not necessary. It is different from those of a boiling water reactor (BWR) and a pressurized water reactor. The supercritical-water-cooled reactor is sensitive to perturbations of the feedwater flow rate because all of the core coolant, driven by the feedwater pumps, flows to the turbines without recirculating core flow. The axial coolant density change is three times larger than that of a BWR. It is necessary to analyze the controllability of the reactor against coolant flow and pressure perturbations to assess the technical feasibility of the reactor. The behaviors of a fast reactor cooled by supercritical water are analyzed for three principal perturbations: change of the control rod position, the feedwater flow rate, and the turbine control valve opening. Based on the step responses to the perturbations, the reactor control system is designed such that the pressure is controlled by the turbine control valves, the main steam temperature is controlled by the feedwater flow rate, and the core power is controlled by the control rods. It is not appropriate to control the pressure by the feedwater flow rate like in a supercritical fossil-fired power plant because of the nuclear thermal-hydraulic coupling. Parameters of the control system are selected by the test calculations to satisfy both fast convergence and stability criteria. Reactor behaviors with the designed control system are stable against the perturbations, although because the plant is the once-through direct-cycle type, the coolant inventory is small. Reactors cooled by supercritical light water are controllable with the described control system.