ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
David D. B. van Bragt, Tim H. J. J. van der Hagen
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 52-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT98-A2818
Articles are hosted by Taylor and Francis Online.
A parametric study of coupled neutronic-thermohydraulic stability of natural circulation boiling water reactors (BWRs) is performed. As an example, the stability characteristics of the Dutch Dodewaard reactor, which was cooled by natural circulation, are determined. The Dodewaard reactor can be considered as the prototype of next generation natural circulation BWRs. The stability issues that are identified for this prototype reactor are therefore important in the design of new natural circulation BWRs.Without a riser section installed, only one region of thermohydraulic instability exists in the stability plane. The significant gravitational pressure drop in a riser section, installed to enhance the natural circulation flow, gives rise to the emergence of an additional region of instability. The oscillations in this zone become especially important during low-power/low-pressure (reactor startup) conditions. Significant damping of these oscillations occurs in a reactor, due to the nuclear void reactivity feedback.A comparison between natural circulation in-phase and out-of-phase reactor stability is made, in particular important for large reactor cores but also yielding unexpected results for small reactors. The impact of downcomer inertia on the stability of the in-phase mode is investigated in detail. Typical trajectories in the dimensionless stability plane are calculated as a function of changing operating conditions, to investigate their influence on reactor dynamics.