ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Joonhong Ahn
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 24-39
Technical Paper | Kiyose Birthday Anniversary | doi.org/10.13182/NT121-24
Articles are hosted by Taylor and Francis Online.
Presented are results of a mathematical analysis on radionuclide transport in parallel planar fractures in water-saturated geologic formations integrated with the source term model, where precipitation of hardly soluble species at the waste-form alteration location and subsequent radionuclide transport in the engineered barriers are considered. Radioactive decay chains of an arbitrary length are considered. A computer code has been developed based on the analytical solutions.The major hazard contributors are 241Am and 243Am in the waste form; 239Pu, 229Th, and 243Am at the surface of the engineered barriers; 223Ra, 231Pa, and 227Ac at a 10-m location from the engineered barriers; and 99Tc, 223Ra, and 225Ra at a 100-m location. With a transport distance of 100 m through the natural barrier, a four-orders-of-magnitude reduction in the total hazard is observed.Thus, the importance of the region in the vicinity of the engineered barriers in the context of the safety assessment can be pointed out. Because the region is disturbed by repository construction, further analysis must be performed by taking into account differing geochemical, hydrological, and mechanical properties from those in the undisturbed host rock.Because the major contributors in the host rock are the decay daughters of minor actinides, recovery of minor actinides reduces the total hazard evaluated at the exit of the geosphere. However, the radiological hazard would be reduced much more effectively by the 100-m-thick geologic formation around the repository than by even a 99% recovery of the actinides.