ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yasushi Nomura, Yoshitaka Naito
Nuclear Technology | Volume 121 | Number 1 | January 1998 | Pages 3-13
Technical Paper | Kiyose Birthday Anniversary | doi.org/10.13182/NT98-A2814
Articles are hosted by Taylor and Francis Online.
Scenario identification, preparation of reliability data, and fault-tree construction were conducted for a criticality in a pulsed column of a typical model of a reprocessing facility to find a weak link in the system. The plant system data, the basic reliability data with the fault-tree analysis code FTL, were supplied from NUKEM GmbH, Germany. In this exercise, a low nitric acid concentration in the scrub flow to the pulsed column is initiated by failures of the reagent preparation system of the primary separation cycle, triggering plutonium accumulation, eventually exceeding the safety limit of the scrub column, and thus a criticality accident occurs. The occurrence frequency was evaluated to be 2.2 × 10-5/yr for this most conservative case of the accident scenario. The main contributor was investigated by the fault-tree branch analysis and identified to be human error relating to the sampling measurement for fresh nitric acid scrub feed. Because 2.2 × 10-5/yr is quite a high value in comparison with the generally accepted 10-6/yr, Monte Carlo uncertainty analysis assuming an error factor of 5 for each of the reliability data was conducted to predict a 90% confidence range of 1.9 × 10-6/yr to 8.25 × 10-5/yr. In addition, there might be unforeseen equipment failures related to the same criticality scenario. The additional analysis and discussion lead to the recommendation to adopt shape and dimension control in the design stage for the whole range of plutonium concentrations from a criticality safety point of view.