ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
W. O. Harms, A. P. Litman
Nuclear Technology | Volume 5 | Number 3 | September 1968 | Pages 156-172
Technical Paper and Note | doi.org/10.13182/NT68-A28045
Articles are hosted by Taylor and Francis Online.
The alkali metals lithium, potassium, and cesium are of principal interest as heat transfer and working fluids in high-performance space-nuclear reactors employing single- and multiloop Rankine cycle conversion. The compatibility of these alkali metals with structural alloys has been investigated for more than a decade in both laboratory- and engineering-scale tests. It is demonstrated that reliable engineering systems involving potassium and cesium can be constructed and operated at 2000°F with first-generation niobium-base alloys like Nb-1% Zr and at 2200°F with advanced niobium-base alloys. Niobium-base alloys can be used at higher temperatures in lithium systems. Tantalum-base alloys appear to be satisfactory for potassium or cesium to at least 2200°F and probably a few hundred degrees higher with lithium. Very advanced systems designed for temperatures of 2500°F and higher probably will require a new group of alloys; tungsten-base alloys appear to be strong candidates for these applications.