ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. Kangilaski, F. R. Shober
Nuclear Technology | Volume 5 | Number 4 | October 1968 | Pages 283-285
Technical Paper and Note | Technical Note | doi.org/10.13182/NT68-A28032
Articles are hosted by Taylor and Francis Online.
Prediction of the room-temperature fatigue life of Type-347 stainless steel, irradiated to 5.5 × 1021 and 11 × 1021 n/cm2, was attempted from tensile tests and the use of Manson's relationship. It was found that the total strain vs cycles-to-failure for irradiated Type-347 stainless steel can be predicted reasonably well for total strains of 1 to 2% at both levels of irradiation. However, the predicted fatigue lives were conservative for total strains that are <1% for material irradiated to a fast fluence of 11 × 1021 n/cm2. Not enough experimental data points were available to correlate the measured fatigue life with predicted fatigue life at total strains of <1% for stainless steel irradiated to a fast fluence of 5.5 × 1021 n/cm2.