ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Bernice E. Paige, Kenneth L. Rohde
Nuclear Technology | Volume 5 | Number 4 | October 1968 | Pages 218-223
Technical Paper and Note | doi.org/10.13182/NT68-A28022
Articles are hosted by Taylor and Francis Online.
More economical methods of manufacturing aluminum-uranium fuel elements used extensively in high thermal-neutron flux reactors might be employed if the quantity of silicon allowed in the fuels could be substantially increased. Since silicon has created problems in reprocessing this type of fuel, various core and cladding alloys were examined for the effect of the silicon content upon dissolution, extraction, and solids production during dissolution. Dissolution rates in nitric acid were related to the metallurgical compositions of the alloys which, in turn, were related to their silicon content, but the effect was not sufficient to interfere with the reprocessing of the fuels. Emulsion stabilization, a problem during liquid-liquid extraction of uranium, is caused by the silicon that dissolves from the alloy as the intermetallic phase U(Al,Si)3. Silicon present in the alloy at a silicon:uranium atom ratio <1 is in the intermetallic fuel particle, while silicon in excess of approximately one atom per atom of uranium does not enter into the intermetallic phase and is present in the alloys as segregations of elemental silicon. This elemental silicon does not dissolve and remains in the dissolver solution as undesirable solids.