ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Carroll B. Mills
Nuclear Technology | Volume 5 | Number 4 | October 1968 | Pages 211-217
Technical Paper and Note | doi.org/10.13182/NT68-A28021
Articles are hosted by Taylor and Francis Online.
In this paper compilation and evaluation of neutron cross sections are oriented in part toward fast spectrum reactor physics. The use of these cross sections with the Sn neutron transport code has resulted in good agreement with experimental results for a variety of critical reactor assemblies. Measurements of critical mass and of the reactivity of a number of isotopes agreed very well with the results of calculations based on evaluated differential cross sections. Systematics of reactivity error magnitudes as a function of flux spectrum indicated several areas for cross-section correction. With these results as a basis for quality evaluation, an examination of the effect of spectral hardness on breeding gain of a fast reactor was made. The highest computed value of breeding gain for large U-Pu metal systems was 1.2 to 1.3, with average 239Pu concentration as low as 2%. Addition of structural material effects on spectral hardness decreased 239Pu breeding gain toward literature values of 0.2 to 0.8.