ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
NRC reorganization aims to speed up licensing
The Nuclear Regulatory Commission announced yesterday that it is launching a significant reorganization to streamline decision making, consolidate functions, and align with national goals for more efficient licensing and deployment of new nuclear technology.
The changes are intended to meet the requirements outlined in President Trump’s Executive Order 14300, “Ordering Reform of the Nuclear Regulatory Commission,” and EO 14210, “Implementing the Department of Government Efficiency Workforce Optimization Initiative.”
Sidney Katz, George I. Cathers
Nuclear Technology | Volume 5 | Number 4 | October 1968 | Pages 206-210
Technical Paper and Note | doi.org/10.13182/NT68-A28020
Articles are hosted by Taylor and Francis Online.
Laboratory experiments showed that neptunium hexafluoride is sorbed more effectively by sodium fluoride at 200°C than by the fluorides of lithium, magnesium, and calcium at 100 to 400°C. The equilibrium pressure of NpF6 over the complex formed with sodium fluoride in the presence of fluorine was measured. A sorption-desorption method based upon the difference in equilibrium pressures of the hexafluorides of neptunium and uranium over the sodium fluoride complex does not appear to be useful for separating neptunium hexafluoride from uranium hexafluoride at neptunium: uranium weight ratios that usually exist in spent nuclear fuels. However, favorable results were obtained with a method that involves cosorbing the neptunium and uranium hexafluorides, reducing the neptunium in the NpF6-NaF complex, desorbing the uranium, and refluorinating and desorbing the neptunium. The development of the latter method is described, and the inherent problems and the effects of variables are discussed.