ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. L. French, J. H. Price
Nuclear Technology | Volume 5 | Number 5 | November 1968 | Pages 334-343
Technical Papers and Note | doi.org/10.13182/NT68-A28001
Articles are hosted by Taylor and Francis Online.
Ground roughness effects were considered in Monte Carlo calculations of the protection factor of a cylindrical concrete structure exposed to an infinite plane 60Co source (∼1.25 MeV gamma) assumed to be representative of fallout. The “buried-source” model with source depths of 0, 0.5, and 1.0 in. was used to simulate smooth, rough, and very rough ground, respectively. The simple structure had a 10-ft radius and wall thicknesses of 20, 40, and 80 lb/ft2. The quantities calculated included the distributions of energy and of angle of the photons incident upon the structure and at detector heights of 3,13, and 23 ft inside. Ground roughness was found to enhance the protection factor of the structure 1) by reducing the incident radiation intensity and 2) by altering the energy and angle distribution of the incident radiation. The first effect was generally about twice as strong as the latter. Both effects are largest for the 3-ft detector height where, for all wall thicknesses, the protection factors were increased by a factor of ∼4.5 by very rough ground. Calculations performed with the engineering method including ground roughness effects accounted for only ∼75% of the protection factor enhancement, but a simple modification produced results that generally agreed within 10% with the Monte Carlo results. The modification consists of adding a fictitious height to the detector height before evaluating the directional response function Gd(ω,H).