ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Donald M. Wiberg, Jan S. Woyski
Nuclear Technology | Volume 5 | Number 1 | July 1968 | Pages 35-45
Technical Paper and Note | doi.org/10.13182/NT68-A27983
Articles are hosted by Taylor and Francis Online.
Analog computer and theoretical results are presented to show the nonlinear stability of any steady-state propellant temperature and flow in a typical nuclear rocket engine. This assurance of stability encourages design of schemes in which the neutronics are not closely controlled, e.g., schemes involving only propellant flow control or on-off drum controllers. A detailed analog computer model was assembled and checked against experimental data. Step-by-step approximations were made to simplify the nuclear engine dynamic behavior. This process continued until a small number of equations were found that adequately described this behavior and were amenable to theoretical analysis. For locked control behavior described by simplified theoretical equations, very large transients are proven to be stable. For the general theoretical case, only preliminary results are now available, but computer results indicate equally stable behavior.