ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. J. Salvaggio
Nuclear Technology | Volume 5 | Number 1 | July 1968 | Pages 26-34
Technical Paper and Note | doi.org/10.13182/NT68-A27982
Articles are hosted by Taylor and Francis Online.
Hafnium control rods removed at three intervals during the operation of the first core of the Shippingport PWR reactor were destructively tested for Hf isotope concentrations, corrosion, tensile properties, and fatigue behavior. The material examined had received a fluence ranging from 1 to 14 × 1020 n/cm2 thermal (E < 0.625 eV) and 0.9 to 6 × 1021 n/cm2 fast (> 1 MeV). Chemical analysis shows only minor irradiation-induced changes in the relative amounts of Hf isotopes. The surface buildup of transmutation products Ta and Lu, which may alter the out-of-reactor corrosion of Hf, apparently has no effect on in-service corrosion. Irradiation to a fluence of 6 × 1021 n/cm2 (> 1 MeV) produced a marked increase in strength and a modest decrease in ductility with increasing fluence, e.g., the yield strength at room temperature increased from 27 000 to 97 000 psi while the total elongation decreased from 35 to 12% and the reduction in area decreased from 35 to 20%. Similar relative changes occurred at 300 and 600°F test temperature. Strain-controlled fatigue tests at 600°F indicate only slight improvement in fatigue life at low strains after irradiation but shorter life than nonirradiated material at high-strain levels. The results of all the post-irradiation tests performed clearly indicate the adequacy of hafnium as a long-life neutron absorber material in pressurized water reactors.